Direct Chaotic Flux Quantification in Perturbed Planar Flows: General Time-Periodicity
نویسنده
چکیده
Chaotic flux occurring across a heteroclinic upon perturbing an area-preserving planar flow is examined. The perturbation is assumed to have general periodicity, extending the harmonic requirement that is often used. Its spatial and temporal parts are moreover not required to be separable. This scenario, though well-understood phenomenologically, has until now had no computable formula for the quantification of the resulting chaotic flux. This article derives such a formula, by directly assessing the unequal lobe areas that are transported via a turnstile mechanism. The formula involves a bi-infinite summation of quantities related to Fourier coefficients of the associated Melnikov function. These are themselves directly obtainable using a Fourier transform process. An example is treated in detail, illustrating the relative ease in which the flux computation can be performed using this theory.
منابع مشابه
Chaotic Behavior in Nonautonomous Equations without Any Time Periodicity
We investigate chaotic behavior of ordinary differential equations with a homoclinic orbit to a dissipative saddle point under a general time dependent forcing without any periodicity in time. We study Poincaré return maps in extended phase space, introducing a characteristic function that generalizes the classic Melnikov function. We then show that the dynamics of the solutions of these equati...
متن کاملTurbulence and waves in numerically simulated slope flows
Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional lamin...
متن کاملStructure of Numerically Simulated Katabatic and Anabatic Flows along Steep Slopes
Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional lamin...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملDynamical flow characterization of transitional and chaotic regimes in convergingdiverging channels
Numerical investigation of laminar, transitional and chaotic flows in convergingdiverging channels are performed by direct numerical simulations in the Reynolds number range 10 < Re < 850. The temporal flow evolution and the onset of turbulence are investigated by combining classical fluid dynamics representations with dynamical system flow characterizations. Modern dynamical system techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 4 شماره
صفحات -
تاریخ انتشار 2005